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Cytochrome c oxidase (CcO) reduces oxygen to water and uses the released free energy to pump 
protons across the membrane, contributing to the transmembrane proton electrochemical gradient that 
drives ATP synthesis. Herein, we provide a complete atomic level description of the key steps of the 
proton pumping mechanism in aa3-type CcO. We have used multiscale reactive molecular dynamics 
simulations to explicitly characterize (with free energy profiles and calculated rates) the internal proton 
transport events that enable pumping and chemistry during a reaction step that involves proton 
transport to the pump loading site (PLS) and to the catalytic site (binuclear center, BNC) (the 
A→PR→F transition). Our results show that both proton transport events are thermodynamically driven 
by electron transfer from heme a to the BNC, but that pumping (amino acid residue E286 to the PLS) is 
kinetically favored, while transfer of the chemical proton (E286 to the BNC) is rate-limiting. The 
calculated rates are in quantitative agreement with experimental measurement. The back flow of the 
pumped proton from the PLS to E286 is prevented by the fast reprotonation of E286 through the D-
channel and a large free energy barrier for the back flow reaction. Proton transport through the D-
channel is not rate-limiting during the A→PR→F transition, but is strongly coupled to solvation 
changes across the N121-N139 asparagine gate. Our results also show how the D-channel biases 
unidirectional proton transport from the inner to outer side of the membrane.  

Abstract	
  

Conclusions	
  
•  Electron transfer from heme a to binuclear center makes proton pumping and chemical reaction more 

favorable both thermodynamically and kinetically.  
•  Chemical reaction at binuclear center is the rate limiting step during the A→F transition. 
•  Possible proton leakage pathways during the enzyme pumping cycle are blocked by kinetic gating in 

three ways: 
1.  Faster proton pumping over chemical reaction. 
2.  Faster E286 reprotonation through D-channel than proton back leakage from pump 

loading site. 
3.  Faster chemical reaction than back leakage through D-channel. 
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State Pumping (µs)   Chemical reaction (µs) Back leakage (µs)  

Deprotonated PLS Protonated PLS 

PM’ 0.11 1.8 × 1010  2.5 × 109 5.9 × 10-5 

PR 4.7 130  160 5.0 × 104 

Experiment2 200 

Table 1. Calculated rates for proton transport of the proton pumping, chemical reaction and back 
leakage before (PM’) and after electron transfer (PR), compared with experimental rates for A→F 
transition. 

Fig. 2 Free energy profiles (PMFs) for (A) proton pumping and (B) chemical reaction before (PM’ blue) 
and after (PR red) electron transfer.  

Table 2. Calculated rates for proton transport in the D-channel for forward and backward proton 
transport in the PM’, PR , F, and F’ states, compared with the experimental rate for A→F transition.   

1.  Nelson JG, Peng YX, Silverstein DW, & Swanson JMJ (2014) Multiscale Reactive Molecular 
Dynamics for Absolute pK(a) Predictions and Amino Acid Deprotonation. J. Chem. Theory 
Comput. 10(7):2729-2737. 

2.  Faxen K, Gilderson G, Adelroth P, & Brzezinski P (2005) A mechanistic principle for proton 
pumping by cytochrome c oxidase. Nature 437(7056):286-289. 

ObjecCves	
  
A complete atomic level description of the key steps of the proton pumping mechanism during the 
A→F transition in aa3-type CcO. 

Proton	
  transport	
  through	
  the	
  D-­‐channel	
  

Fig. 3. Two-dimensional free energy profiles (PMFs) in the D-channel for the (A) PM’, (B) PR,  (C) F, 
and (D) F’ states.  
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•  Proton transport in D-channel is strongly coupled to hydration level change across N139-N121 gate. 
•  Proton transport in D-channel is not rate limiting during the A→F transition.  
•  The fast forward proton transport in D-channel prevents proton back leakage in hydrophobic cavity. 
•  The large back flow barrier prevent proton back leakage through D-channel to the N-side bulk. 

(B) (A) 

(C) (D) 

−20
−15
−10
−5
 0
 5

 10
 15
 20

 0  5  10  15  20  25  30  35  40

PM
F 

(k
ca

l/m
ol

)

CEC position (Å)

PM’
PR

F
F’

N139

D132
E286

Up  Down 

Fig. 4. Free energy profiles (PMFs) for proton transport in the D-channel along the minimum free 
energy pathway for PM’ (red), PR (blue), F (black), and F’ (purple) states.  
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State Forward (µs) Backward ( µs) 

PM’ 8.3 × 10-2 1.6 × 1010 

PR 6.7 5.0 × 1013 

F 40 1.8 × 107 

F’ 0.21 5.6 × 104 

Experiment2 200 Fig. 1 Left: cytochrome c oxidase embedded in lipid membrane. Right: electron transfer and proton 
transport pathways in the proton pumping cycle. 

Methodology	
  
•  Model the hydrated excess proton by multiscale reactive molecular dynamic (MS-RMD) simulation. 
•  Parameterize MS-RMD models for protonatable groups in protein by FitEVB1. 
•  Identify proton transport pathway by metadyanmics simulation with MS-RMD models. 
•  Calculate 1-D or 2-D free energy profiles by umbrella sampling with MS-RMD models. 
•  Evaluate reaction rates by transition state theory. 

•  Electron transfer provides thermodynamic driving force for proton pumping and chemical reaction. 
•  Proton pumping is more kinetically favorable over chemical reaction and therefore is not short-

circuited by the latter. 
•  After electron transfer, the large proton back flow barrier prevents proton back leakage. 


