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Overview

The management of water is critical in the U.S. and around the
world. Our project conceptualizes water management as
occurring at several distinct but related levels:

* Global hydrology is driven by large-scale climate and
weather patterns

 Regional water management moves water across or
between watersheds

* Local water management occurs in a context of multiple
peer institutions that form a network

* |ndividual or household water use is driven by human
decisions that are shaped by individual characteristics and
perceptions about the resource being used
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Our project uses data mining and simulation modeling to
understand how these levels interact. Specifically, we examine:

 How individual perceptions shape household consumption

* How networks of water management, and the legal
framework within which institutions must act, shape
municipal water demand

* How municipal demand leads to impacts on regional
hydrology
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Residential Water Use

Residential water use is of critical interest to planners and water managers
throughout the U.S. and the world. However, predicting fluctuations in water \ @ Vorene
consumption, and understanding the causes of those fluctuations, is challenging.

To address this, we created an agent-based model of household water use, and
calibrated it to water use in Tucson, Arizona. Each agent represented a single

household, and was endowed with:

* Aunique baseline value for water use

* Avalue for sensitivity to price increases or ‘shocks’
* Avalue for the weight given to price as a concern for shaping usage

Q@
* Avalue representing conservation attitudes *®
* Avalue for the weight given to conservation as a concern for shaping usage ®
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More than 200,000 households could be simulated, representing all of Tucson; alternatively, a subset of these could be sampled. Real-world
pricing data was used to capture price increases and potential price shocks during the period studied. Calculated demand was also adjusted
for climate based on historic weather data. In some test runs, conservation messages could be delivered to randomly selected households in

the social networks; the assumed ‘effectiveness’ of these messages could be varied, with the effect of a message being a change in the

conservation attitudes held by the household.

Approximately 27,000 runs were performed using the Swift/T test harness. The figure below (left) gives a comparison with actual usage data
for Tucson from 1994-2012 and the top 40 runs as assessed by closeness-of-fit to the empirical data (using least-squares difference method).
The empirically attested data is in blue; magenta lines indicate the usage of the top 10 runs, yellow the next top 30 runs. At right is a figure
showing the combinations of price and conservation weighting and their closeness to the empirical data (blue is closer, red is more distant).
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Water Management

Water is delivered to Phoenix via the CAP Canal. The CAP system serves municipal water management
agencies; these provide water to their cities according to the city’s population and gallons per capita per

day (GPCD) demands.

The CAP system requires each manager to submit a schedule in October for deliveries per month for the
following year. This is a projection, and may not be accurate. During the year, shortages and surpluses
can be exchanged. Each manager must decide when to return water, or when to try to obtain more

water, and (in either case) how much.

We simulate this by assuming that each manager will schedule a given year based on the previous year’s
usage. During the year each manager has a parameter for:

* Percentage over prediction at which water is returned
 Percentage under prediction at which water is sought

e Fraction of surplus returned
* Fraction of shortage requested
* Noise by which demand fluctuates

December Shortages by year, Full Exchange Permitted

In single runs (left), our interest is in which cities are
more or less likely to have end-of-year shortages as
their predictions are less accurate and demand
exceeds supply. For these runs, all CAP customers
have the same values for their parameters, and we
can compare results with exchanges permitted vs.
those without.

Alternatively, and more realistically, we can assume that each customer has different thresholds,
fractions, and noise levels, and ask whether the values for specific customers (e.g. very large cities), are
determinant, and, if so, which kinds of values (e.g. overage vs. shortage thresholds) are more significant.

The figure to the right ranks a collection of 29,464 runs
performed using the Swift/T parallel scripting language.
The runs are a strategic sample of the very large

parameter space possible with 14 customers x 5

parameters/customer. For each parameter several
values are explored, and the slope of the regression
through the average total shortage for all runs with that | =«
value is calculated. The list at far right shows these
results by parameter. Note that ‘shortage threshold’

seems much more significant than other factors,
especially ‘noisiness’.
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The complexity of the Agent-Based models that we are using to explore these
issues commonly leads to a profusion of parameters, and, therefore, to an
extremely large parameter space. The computing facilities at the RCC permit
large numbers of runs to be performed. However, the logistical challenges of
organizing these large ensemble runs are not insignificant.

Model Properties

Model Project: |/Users/murphy/work/CNH_GIT/CNHModeling/CNH_CRB] | Browse |

Scenario: |~hy/work/CNH_GIT/CNHModeIing/CNH_CRB/CNH_CRB.rs| | Browse |

Output Directory: ’murphy/work/CNH_GIT/CNHModeling/CNH_CRB/output| | Browse ]

Optional Output File Patterns:

Pattern Local Path Aggregate Has Header

To overcome these challenges, we use the Swift workflow management tool, (Add ] [ Delete
developed by Argonne National Lab. This tool allows the specification of a
graph of tasks and dependencies (as in the script below), and then automates
the invocation of the executables needed to create the component nodes in
the graph.

Run Properties

SSH Key Directory: |/Users/murphy/.ssh

VM Arguments: |-me512M ]

Poll Frequency (minutes): ’ 1 ‘ @

We use this in conjunction with our Agent-Based Modeling toolkit, Repast
Simphony. Repast Simphony includes robust tools for preparing large

ensembles that can be run on a variety of platforms. The user interface (right) allows the creation of a file that specified the combinations of
parameters to be used. Repast can then launch ensembles on a variety of platforms, or, as in our case, can be manually launched with Swift.

Using Swift also allows adaptive simulation. This implies that given a large parameter

800 L UL S—— .= space, the strategy to explore that space can be calculated and/or adjusted as

ml < > | |__“]swiftrun.swift » No Selection

Variable Slope
Goodyear_shortageThreshold
Gilbert_overageThreshold
Tempe_shortageThreshold
Mesa_shortageThreshold
Carefree_shortageThreshold
CaveCreek_shortageThreshold
Avondale_overageThreshold
Mesa_amtToObtain
CaveCreek_overageThreshold
Scottsdale_shortageThreshold
Peoria_amtToObtain
Glendale_shortageThreshold
Surprise_shortageThreshold
Carefree_overageThreshold
Chandler_overageThreshold
Apachelunction_shortageThreshold
Avondale_shortageThreshold
Chandler_amtToObtain
Scottsdale_overageThreshold
Peoria_amtToReturn
Peoria_shortageThreshold
Avondale_amtToObtain
Avondale_amtToReturn
Surprise_amtToReturn
Apachelunction_amtToReturn
Phoenix_amtToReturn
Phoenix_amtToObtain
CaveCreek_amtToReturn
CaveCreek_amtToObtain
Surprise_overageThreshold
Phoenix_shortageThreshold
Surprise_amtToObtain
Carefree_amtToReturn
Chandler_shortageThreshold
CaveCreek_noisiness
Gilbert_noisiness
Gilbert_shortageThreshold
Gilbert_amtToObtain
Gilbert_amtToReturn
Carefree_noisiness
Surprise_noisiness
Glendale_overageThreshold
Goodyear_amtToReturn
Tempe_noisiness
Goodyear_overageThreshold
Scottsdale_amtToReturn
Tempe_overageThreshold
Glendale_noisiness
Chandler_noisiness
Chandler_amtToReturn
Apachelunction_amtToObtain
Scottsdale_amtToObtain
Phoenix_noisiness
Phoenix_overageThreshold
Glendale_amtToReturn
Tempe_amtToReturn
Tempe_amtToObtain
Mesa_overageThreshold
Mesa_noisiness
Glendale_amtToObtain
Avondale_noisiness
Mesa_amtToReturn
Apachelunction_overageThreshold
Goodyear_amtToObtain
Goodyear_noisiness
Apachelunction_noisiness
Scottsdale_noisiness

3.84528E+11
3.5877E+11
3.10557€+11
2.96931E+11
2.30866E+11
1.92848E+11
1.8707€+11
1.86322E+11
1.69394E+11
1.52278E+11
1.4442E+11
1.35741E+11
1.35435€+11
1.31508E+11
1.30983E+11
1.30883E+11
1.14664E+11
1.13893E+11
1.09022E+11
1.08173E+11
1.06208E+11
1.04129e+11
1.00697€+11
1.00223e+11
96839780882
88165057443
81758772832
81624519331
80950457912
75951618464
74202256805
71199156982
68861403787
67819355073
65427751129
63518633465
55885038610
59370103196
58883591134
58798669126
56767606891
55573215839
45433327015
46919401969
44638735806
42815756127
42735510989
38569125669
36006131297
35541926190
31372826026
23364558604
21047871817
20329656368
15429015421
18434685639
14375538976
14051196891
13588772102
12163018820
9341928717
8571740034
5265487411
3289237465
3116341667
2535355911
1859606376

// to run, type: swift-t swiftrun.swift —-f="upf.txt"
import io;

simulations are in progress. We have developed simulation harnesses in Swift that
Imbort filiss allow evolutionary approaches (genetic algorithms), various types of sampling and
P filtering.

*= Repast Batch Run *
scokk /

e I I N

10, app (file out, file err) rs_single_run (file shfile, int i, string outputdir)

nf { o , Swift exists in two versions: Swift/K is the original tool, and Swift/T is a newer
12 "bash" shfile i outputdir @stdout=out @stderr=err; . . . . .
M implementation that uses MPI and the Asynchronous Dynamic Load Balancing library

15 // custom implementation of mkdir in swift to avoid race conditions

i op (void o) mymir(string dirmone) { (ADLB) to extend Swift’s power to the largest HPC platforms. We have employed both
- N Swift/K and Swift/T for our projects here.

20, file bashfile = input_file("rs_single_run.sh");

22 // upf = UnrolledParamFile format

22| string upf_file_name = argv("f"); // e.g., —-f="upf.txt" // this is the input
24 string upf_lines[] = file_lines(input(upf_file_name));

25 foreach s,i in upf_lines {

Swift can be used both in the generation of results over large ensemble runs and in
w4/ traceli); _ ' o the post-run analyses. Because the ensemble runs often generate very large datasets
27 string instance_dir = strcat(strcat("instance_",fromint(i)),"/"); . . . o . . )

B . iir(instance dir) = vielding tens of thousands of individual result files, Swift is employed to process these
{

31 file out <strcat(instance_dir,"out.txt")>; files as well. This processing can be included in the original run or performed as a

32 f}le err <strcat(}nstance_d}r,:err.txt:)>;- ) _ . . .

: Bl i g 1oy e 1 separate job, depending on whether the specifics of the analyses needed are known
35 } . . . . . .

6| ) in advance of the simulation run or if they are decided upon completion and

” inspection.

Regional Hydrology

In previous studies, we have coupled our Agent-Based Model (ABM) with a regional- to global-scale hydrology model called the Water
Balance Model(WBM). The WBM operates on grid cells with resolution as fine as 6” lat/lon. It provides an accounting of surface flow and

groundwater for each cell. Surface flow is modeled through an abstract network that connects grid cells into representations of water
sheds.

The motivation for linking the WBM and ABM was two-fold:

* To allow the ABM to model accurate hydrology: The impacts of human decisions on the physical hydrology of the region could be
captured

 To improve the WBM’s representation of human decisions: The WBM implemented generic rules for irrigation or the operation of
dams, but these were abstract and not constrained by the actual situation found in a specific context

Our procedure for coupling the ABM and the WBM overcame several conceptual and practical difficulties:

* To avoid duplication, the WBM’s human system had to be ‘turned off’ at targeted points

e WBM and ABM resolution had to be resolved: because the ABM operates at a finer resolution, a strategy by which ABM results and
interactions could be aggregated to match WBM grid cells was implemented.

* Because the WBM model run separately from the ABM, the ZeroMQ protocol was used to pass messages from the WBM to the ABM and
back

 Because the WBM natively includes irrigation, ‘Farmer’ agents had to be included in the model. These received information from the
WBM on the amount of water to draw, but did not follow the WBM'’s generic rules for finding sources of the water, and instead drew
water from the CAP canal system.

Our objective was to ensure that a coupled run could duplicate the original runs using the de-coupled WBM. An example of the baseline run
is given at left, below. The figure on the right is a subtraction of a coupled ABM/WBM run from the baseline run. While we are still working
to interpret these results, the close correspondence suggests that our mechanisms are functioning properly and will provide useful results.

Equation used -
FullSharing{2882-88-883-Baseline{2002-08-003
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A current objective is to install the WBM on the Midway cluster, and to allow large-ensemble runs to be done with the coupled WBM/ABM
system.
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